lunes, 7 de abril de 2014

ETIMOLOGÍA DE LA CIENCIA

Cuando hablamos de la ciencia nos referimos a una de las grandes construcciones humanas que ha permitido que el hombre saliera de las cavernas y lograse el nivel de conocimiento que hoy poseemos, sin embargo en el mundo de la ciencia subyacen gran cantidad de inquietudes; como si la ciencia puede explicar todos los fenómenos que ocurren o bien por el contrario la ciencia solo puede hablar de lo que se puede experimentar, dentro de toda esta discusión subyace un significado de qué es la ciencia, cual es su campo y que aportes ha ejercido en nuestro desarrollo cultural y social. estos es precisamente lo que intentaremos abordar en esta entrada. La ciencia es un proceso que nos ha permitido conocer, explorar, imaginar, solucionar, crear, es un intento de abordar el conocimiento y poder explicarlo. Para ello uno de los ingredientes fundamentales es la curiosidad, y esta es una cualidad que ha estado presente en la historia humana, somos curiosos, tratamos de explicarnos lo que no logramos entender, lo que nos rodea, cuando miramos al cielo en nuestras noches primigenias, el hombre entornaba sus ojos y siempre buscaba explicaciones aquellos fenómenos que no lograba entender, y sino como explicar el movimiento de los astros, los eclipses, el día y la noche, ese eterno movimiento, e inicialmente se recurre a una serie de hipótesis (mitos) para lograr superar ese nivel de desinformación, pero las hipótesis deben ser demostradas, son intentos que por si solas no lograr llegar a consensos y por eso hubo diferentes explicaciones, algunas se adoptaron como oficiales y otras quedaron en el olvido. Y no solo la imaginación ha sido uno de nuestros guías en la construcción de conocimiento, lo es también nuestra forma de pensamiento racional, estamos dotados de un pensamiento que nos lleva a mirar las cosas dentro de un contexto, un analisis, contrastando cosas, comparando, buscando diferencias, si nace nuestro sistema de razón, expresado muy bien por Descartes. Como vemos la construcción del conocimiento ha seguido una escala de evolución para llegar a una sistematización del mismo. Veamos ahora un poco lo que es la ciencia y como ha sido este proceso que nos ha llevado a nuestro nivel actual. Para construir este tema nos valdremos fundamentalmente de articulo Introducción a la ciencia de Isaac Asimov porque creo que hila de una manera muy comprensible el desarrollo histórico de la ciencia, además de hacerlo muy ameno, y matizaremos con algunos otros apuntes cuya web grafía encontrará al final de esta entrada.

Hacia una definición de la ciencia

la Ciencia es el conjunto de conocimientos obtenidos mediante la observación y el razonamiento, sistemáticamente estructurados y de los que se deducen principios y leyes generales.

La principal herramienta para obtener conocimientos, y sobre todo, la más eficiente es el llamado Método Científico. Muchos hemos aprendido en el colegio alguna vez que el Método Científico consta de una serie de pasos que incluyen:

1- Hacerse una pregunta o tener una idea (hipótesis).

2- Hacer un experimento para comprobar si la realidad concuerda con nuestra idea.

3- En caso de que lo haga, formular una Teoría.

Y lo que es más importante, y para muchos, desagradable, desilusionante, aburrido o similar, es intentar destruir nuestra propia teoría. De la misma forma, intentar tumbar teorías de los demás, o invitar a colegas a que intenten destruir la nuestra, de forma racional, y con pruebas reales.

Mientras más golpes resista nuestra teoría, más sólida será, y lógicamente, más cercana estará de una verdad universal, si existiese tal cosa. Una forma muy común de esquivar la crítica y/o autocrítica, es la de Cosechar Cerezas. En una plantación de cerezas podemos encontrar algunas maduras, y otras secas o podridas. Si sólo tomamos las más bellas, y las presentamos en una canasta, las personas podrían creer que son todas así, porque no les estamos mostrando que hay cerezas que no concuerdan con nuestra teoría. Las ocultamos de forma voluntaria o involuntaria, pero sesgamos información al fin.

Esto puede estar referido a mediciones de alguna cosa que queremos concluir, o pueden ser anécdotas de personas que curaron su enfermedad de tal manera. Lógicamente quienes murieron en el camino no pueden mostrar su mala experiencia. Por eso hay que prestar mucha atención a las estadísticas, siempre.

La Ciencia, en un sentido amplio, se refiere a un sistema de conocimiento objetivo. En un sentido más restringido, la ciencia es un sistema para adquirir conocimientos haciendo uso del método científico, así como de un cuerpo organizado de conocimientos obtenidos mediante este mismo tipo de investigaciones.

Los campos de la ciencia comúnmente se clasifican en dos:

• Las ciencias naturales, que estudian fenómenos naturales, incluyendo la vida.

• Las ciencias sociales, que estudian el comportamiento humano y las sociedades.

Estos campos conforman las ciencias empíricas, lo que quiere decir, que el conocimiento proviene de fenómenos observables y capaces de ser evaluados por otros investigadores que trabajen bajo las mismas condiciones.

Los científicos utilizan modelos para sus descripciones, especialmente aquellos que pueden servir para hacer predicciones que se puedan evaluar mediante la observación o la experimentación.

Una hipótesis es un argumento que no ha sido ni sustentado ni rechazado por algún experimento.

Una teoría, en el contexto científico, es un modelo o marco de referencia lógicamente consistente, para describir el comportamiento de cierto fenómeno natural. Típicamente, una teoría describe este comportamiento en un sentido más amplio que la hipótesis (comúnmente un gran número de hipótesis pueden ligarse lógicamente dentro de una sola teoría).

Una ley física o una ley de la naturaleza es una generalización científica basada en una gran cantidad de observaciones empíricas, que se considera completamente verificada.

Como vemos entonces la ciencia nos proporciona un método para abordar un camino que nos lleve a las diferentes explicaciones sobre el por qué de un fenómeno en particular, en otras palabras las metas que nos proporciona la ciencia esta en producir modelos de la realidad que resulten utiles, para logar esto nos basamos en hipótesis, deducciones que nos permiten una primera aproximación o comprensión del hecho estudiado. Sin embargo detrás de todo este intrincado proceso que mas adelante veremos como método científico, que es lo que ha animado al ser humano a desarrollar este proceso que hoy llamamos ciencia, y que puede producir muchos conflictos con otros conceptos que ha desarrollo el hombre como la religión, veamos un poco mas acerca de este interesante aspecto:

¿Qué es la Ciencia?

“Y, al principio, todo fue curiosidad.

La curiosidad, el imperativo deseo de conocer, no es una característica de la materia inanimada. Tampoco lo esde algunas formas de organismos vivos, a los que, por este motivo, apenas podemos considerar vivos. 
Un árbol no siente curiosidad alguna por su medio ambiente, al menos en ninguna forma que podamos reconocer; por su parte, tampoco la sienten una esponja o una ostra. El viento, la lluvia y las corrientes oceánicas les llevan lo que necesitan, y toman de ellos lo que buenamente pueden. Si el azar de los acontecimientos es tal que llega hasta ellos el fuego, el veneno, los depredadores o los parásitos, mueren tan estoica y silenciosamente como vivieron. 
Sin embargo, en el esquema de la vida, algunos organismos no tardaron en desarrollar ciertos movimientos independientes. Esto significó un gran avance en el control de su medio ambiente. Con ello, un organismo móvil no tenía ya por qué esperar largo tiempo, en estólida rigidez, a que los alimentos se cruzaran en su camino, sino que podía salir a buscarlos.

Esto supuso que habían entrado en el mundo la aventura y la curiosidad. El individuo que vacilaba en la lucha competitiva por los alimentos, que se mostraba excesivamente conservador en su exploración, simplemente perecía de hambre. Tan pronto como ocurrió eso, la curiosidad sobre el medio ambiente fue el precio que se hubo de pagar por la supervivencia. 
El paramecio unicelular, en sus movimientos de búsqueda, quizá no tenga voliciones ni deseos conscientes en el sentido humano, pero no cabe duda de que experimenta un impulso, aún cuando sea de tipo fisicoquímico «simple», que lo induce a comportarse como si estuviera investigando, su entorno en busca de alimentos. Y este «acto de curiosidad» es lo que nosotros más fácilmente reconocemos como inseparable de la forma de vida más afín a la nuestra. 
Al hacerse más intrincados los organismos, sus órganos sensitivos se multiplicaron y adquirieron mayor complejidad y sensibilidad. Entonces empezaron a captar mayor número de mensajes y más variados desde el medio ambiente y acerca del mismo. A la vez (y no podemos decir si, como causa o efecto) se desarrolló una creciente complejidad del sistema nervioso, el instrumento viviente que interpreta y almacena los datos captados por los órganos de los sentidos, y con esto llegamos al punto en que la capacidad para recibir, almacenar e interpretar los mensajes del mundo externo puede rebasar la pura necesidad. Un organismo puede haber saciado momentáneamente su hambre y no tener tampoco, por el momento, ningún peligro a la vista. ¿Qué hace entonces? 
Tal vez dejarse caer en una especie de sopor, como la ostra. Sin embargo, al menos los organismos superiores, siguen mostrando un claro instinto para explorar el medio ambiente. Estéril curiosidad, podríamos decir. No obstante, aunque podamos burlarnos de ella, también juzgamos la inteligencia en función de esta cualidad. El perro, en sus momentos de ocio, olfatea acá y allá, elevando sus orejas al captar sonidos que nosotros no somos capaces de percibir; y precisamente por esto es por lo que lo consideramos más inteligente que el gato, el cual, en las mismas circunstancias, se entrega a su aseo, o bien se relaja, se estira a su talante y dormita. Cuanto más evolucionado es el cerebro, mayor es el impulso a explorar, mayor la «curiosidad excedente». El mono es sinónimo de curiosidad. El pequeño e inquieto cerebro de este animal debe interesarse, y se interesa en realidad, por cualquier cosa que caiga en sus manos. En este sentido, como en muchos otros, el hombre no es más que un supermono .

El cerebro humano es la más estupenda masa de materia organizada del Universo conocido, y su capacidad de recibir, organizar y almacenar datos supera ampliamente los requerimientos ordinarios de la vida. Se ha calculado que, durante el transcurso de su existencia, un ser humano puede llegar a recibir más de cien millones de datos de información. Algunos creen que este total es mucho más elevado aún. Precisamente este exceso de capacidad es causa de que nos ataque una enfermedad sumamente dolorosa: el aburrimiento. Un ser humano colocado en una situación en la que tiene oportunidad de utilizar su cerebro sólo para una mínima supervivencia, experimentará gradualmente una diversidad de síntomas desagradables, y puede llegar incluso hasta una grave desorganización mental.

Por tanto, lo que realmente importa es que el ser humano sienta una intensa y dominante curiosidad. Si carece de la oportunidad de satisfacerla en formas inmediatamente útiles para él, lo hará por otros conductos, incluso en formas censurables, para las cuales reservamos admoniciones tales como: «La curiosidad mató el gato», o «Métase usted en sus asuntos». 
La abrumadora fuerza de la curiosidad, incluso con el dolor como castigo, viene reflejada en los mitos y leyendas. Entre los griegos corría la fábula de Pandora y su caja. Pandora, la primera mujer, había recibido una caja, que tenía prohibido abrir. Naturalmente, se apresuró a abrirla, y entonces vio en ella toda clase de espíritus de la enfermedad, el hambre, el odio y otros obsequios del Maligno, los cuales, al escapar, asolaron el mundo desde entonces. 
En la historia bíblica de la tentación de Eva, no cabe duda de que la serpiente tuvo la tarea más fácil del mundo. En realidad podía haberse ahorrado sus palabras tentadoras: la curiosidad de Eva la habría conducido a probar el fruto prohibido, incluso sin tentación alguna. Si deseáramos interpretar alegóricamente este pasaje de la Biblia, podríamos representar a Eva de pie bajo el árbol, con el fruto prohibido en la mano, y la serpiente enrollada en torno a la rama podría llevar este letrero: «Curiosidad». Aunque la curiosidad, como cualquier otro impulso humano, ha sido utilizada de forma innoble, la invasión en la vida privada, que ha dado a la palabra su absorbente y peyorativo sentido, sigue siendo una de las más nobles propiedades de la mente humana. En su definición más simple y pura es «el deseo de conocer». 
Este deseo encuentra su primera expresión en respuestas a las necesidades prácticas de la vida humana: cómo plantar y cultivar mejor las cosechas; cómo fabricar mejores arcos y flechas; cómo tejer mejor el vestido, o sea, las «Artes Aplicadas». Pero, ¿qué ocurre una vez dominadas estas tareas, comparativamente limitadas, o satisfechas las necesidades prácticas? Inevitablemente, el deseo de conocer impulsa a realizar actividades menos limitadas y más complejas.

Así, pues, el deseo de conocer parece conducir a una serie de sucesivos reinos cada vez más etéreos y a una más eficiente ocupación de la mente, desde la facultad de adquirir lo simplemente útil, hasta el conocimiento de lo estético, o sea, hasta el conocimiento «puro». 
Por sí mismo, el conocimiento busca sólo resolver cuestiones tales como: ¿A qué altura está el firmamento?», o « ¿Por qué cae una piedra?». Esto es la curiosidad pura, la curiosidad en su aspecto más estéril y, tal vez por ello, el más perentorio. Después de todo, no sirve más que al aparente propósito de saber la altura a que está el cielo y por qué caen las piedras. El sublime firmamento no acostumbra interferirse en los asuntos corrientes de la vida, y, por lo que se refiere a la piedra, el saber por qué cae no nos ayuda a esquivarla más diestramente o a suavizar su impacto en el caso de que se nos venga encima. No obstante, siempre ha habido personas que se han interesado por preguntas tan aparentemente inútiles y han tratado de contestarlas sólo por el puro deseo de conocer, por la absoluta necesidad de mantener el cerebro trabajando.

El mejor método para enfrentarse con tales interrogantes consiste en elaborar una respuesta estéticamente satisfactoria, respuesta que debe tener las suficientes analogías con lo que ya se conoce como para ser comprensible y plausible. La expresión «elaborar» es más bien gris y poco romántica. Los antiguos gustaban de considerar el proceso del descubrimiento como la inspiración de las musas o la revelación del cielo. En todo caso, fuese inspiración, o revelación, o bien se tratara de la clase de actividad creadora que desembocaba en el relato de leyendas, sus explicaciones dependían, en gran medida, de la analogía. El rayo, destructivo y terrorífico, sería lanzado, a fin de cuentas, como un arma, y a juzgar por el daño que causa parece como si se tratara realmente de un arma arrojadiza, de inusitada violencia. Semejante arma debe de ser lanzada por un ente proporcionado a la potencia de la misma, y por eso el trueno se transforma en el martillo de Thor, y el rayo, en la centelleante lanza de Zeus. El arma sobrenatural es manejada siempre por un hombre sobrenatural.

El primero en afrontar este empeño, según la tradición griega, fue Tales de Mileto hacia el 600 a. de J.C. Aunque sea dudoso el enorme número de descubrimientos que le atribuyó la posteridad, es muy posible que fuese el primero en llevar al mundo helénico el abandonado conocimiento babilónico. Su hazaña más espectacular consistió en predecir un eclipse para el año 585 a. de J.C., fenómeno que se produjo en la fecha prevista. 
Comprometidos en su ejercicio intelectual, los griegos presumieron, por supuesto, que la Naturaleza jugaría limpio; ésta, si era investigada en la forma adecuada, mostraría sus secretos, sin cambiar la posición o la actitud en mitad del juego. (Miles de años más tarde, Albert Einstein expresó, también esta creencia al afirmar: «Dios puede ser sutil, pero no malicioso») Por otra parte, creíase que las leyes naturales, cuando son halladas, pueden ser comprensibles. Este optimismo de los griegos no ha abandonado nunca a la raza humana. 
Con la confianza en el juego limpio de la Naturaleza el hombre necesitaba conseguir un sistema ordenado para aprender la forma de determinar, a partir de los datos observados, las leyes subyacentes. Progresar desde un punto basta otro, estableciendo líneas de argumentación, supone utilizar la «razón». Un individuo que razona puede utilizar la «intuición» para guiarse en su búsqueda de respuestas, mas para apoyar su teoría deberá confiar, al fin, en una lógica estricta. Para tomar un ejemplo simple: si el coñac con agua, el whisky con agua, la vodka con agua o el ron con agua son brebajes intoxicantes, puede uno llegar a la conclusión que el factor intoxicante debe ser el ingrediente que estas bebidas tienen en común, o sea, el agua. Aunque existe cierto error en este razonamiento, el fallo en la lógica no es inmediatamente obvio, y, en casos más sutiles, el error puede ser, de hecho, muy difícil de descubrir. 
El descubrimiento de los errores o falacias en el razonamiento ha ocupado a los pensadores desde los tiempos griegos hasta la actualidad, y por supuesto que debemos los primeros fundamentos de la lógica sistemática a Aristóteles de Estalira, el cual, en el siglo IV a. de J.C., fue el primero en resumir las reglas de un razonamiento riguroso. 
En el juego intelectual hombre-Naturaleza se dan tres premisas: La primera, recoger las informaciones acerca de alguna faceta de la Naturaleza; la segunda, organizar estas observaciones en un orden preestablecido. (La organización no las altera, sino que se limita a colocarlas para hacerlas aprehensibles más fácilmente. Esto se ve claro, por ejemplo, en el juego del bridge, en el que, disponiendo la mano por palos y por orden de valores, no se cambian las cartas ni se pone de manifiesto cuál será la mejor forma de jugarlo, pero sí se facilita un juego lógico.) Y, finalmente, tenemos la tercera, que consiste en deducir, de su orden preestablecido de observaciones, algunos principios que las resuman.

Hasta aquí solo encontramos un extracto de este magnifico prologo del libro introducción a la ciencia, ahí os dejo el enlace para que lo exploren en su totalidad.

Historia del pensamiento Científico

Los esfuerzos para ordenar el conocimiento se remontan a los primeros tiempos históricos (con escritura), los testimonios escritos más antiguos de investigaciones protocientíficas proceden de las culturas mesopotámicas, y corresponden a listas de observaciones astronómicas, sustancias químicas o síntomas de enfermedades — además de numerosas tablas matemáticas — inscritas en caracteres cuneiformes sobre tablillas de arcilla. Otras tablillas que datan aproximadamente del 2000 a.C. demuestran que los babilonios conocían el teorema de Pitágoras, resolvían ecuaciones cuadráticas y habían desarrollado un sistema sexagesimal de medidas (basado en el número 60) del que se derivan las unidades modernas para tiempos y ángulos.

En el valle del Nilo se han descubierto papiros de un periodo cronológico próximo al de las culturas mesopotámicas que contienen información sobre el tratamiento de heridas y enfermedades, la distribución de pan y cerveza, y la forma de hallar el volumen de una parte de una pirámide. Algunas de las unidades de longitud actuales proceden del sistema de medidas egipcio y el calendario que empleamos es el resultado indirecto de observaciones astronómicas prehelénicas.

Orígenes de la Teoría Científica

El conocimiento científico en Egipto y Mesopotamia era sobre todo de naturaleza práctica.

Es de destacar que por su posición filosófica, los griegos fueron muy buenos en geometría pero no desarrollaron una "ciencia" fáctica (basada en la experiencia basada en hechos observados). Uno de los primeros griegos, en el siglo VI a.C., que intentó explicar las causas fundamentales de los fenómenos naturales fue el filósofo Tales de Mileto. Fue un gran matemático que pensaba que la Tierra era un disco plano que flotaba en el elemento universal, el agua. El matemático y filósofo Pitágoras, de época posterior, estableció una escuela de pensamiento en la que las matemáticas se convirtieron en disciplina fundamental en toda investigación científica. Los eruditos pitagóricos postulaban una Tierra esférica que se movía en una órbita circular alrededor de un fuego central. En Atenas, en el siglo IV a.C., la filosofía natural jónica y la ciencia matemática pitagórica llegaron a una síntesis en la lógica de Platón y Aristóteles. En la Academia de Platón se subrayaba el razonamiento deductivo y la representación matemática; en el Liceo de Aristóteles primaban el razonamiento inductivo y la descripción cualitativa. La interacción entre estos dos enfoques de la ciencia ha llevado a la mayoría de los avances posteriores.

Por esta época — 300 a. c.— Euclides (quien probablemente estudió en Atenas con discípulos de Platón) escribe "Elementos de geometría", es un extenso tratado de matemáticas en 13 volúmenes sobre materias tales como geometría plana, proporciones en general, propiedades de los números, magnitudes inconmensurables y geometría del espacio. En esta obra se parte de conceptos que se toman como verdades absolutas (axiomas o postulados) y se los utiliza para "demostrar" propiedades (teoremas). Estos teoremas son la base para demostrar otros teoremas armando una estructura sistematisada que aún hoy se utiliza en matemática. Es de destacar que el quinto postulado (postulado de las paralelas) es de extrema importancia ya que en el siglo XIX su negación dará origen a la geometría llamada no euclidiana.

Durante la llamada época helenística, que siguió a la muerte de Alejandro Magno, el matemático, astrónomo y geógrafo Eratóstenes, tomó la distancia entre dos ciudades egipcias y calculó de forma asombrosamente precisa de las dimensiones de la Tierra. Por otro lado el astrónomo Aristarco de Samos propuso un sistema planetario heliocéntrico (con centro en el Sol), aunque este concepto no halló aceptación en la época antigua. El matemático e inventor Arquímedes sentó las bases de la mecánica y la hidrostática (una rama de la mecánica de fluidos); el filósofo y científico Teofrasto fundó la botánica; el astrónomo Hiparco de Nicea desarrolló la trigonometría, y los anatomistas y médicos Herófilo y Erasístrato basaron la anatomía y la fisiología en la disección.

Tras la destrucción de Cartago y Corinto por los romanos en el año 146 a.C., la investigación científica perdió impulso hasta que se produjo una breve recuperación en el siglo II d.C. bajo el emperador y filósofo romano Marco Aurelio. Durante este breve lapso el astrónomo Claudio Ptolomeo propuso la teoría donde la Tierra era el centro del Universo (teoría geocéntrica). También surgieron las obras médicas del filósofo y médico Galeno que se convirtieron en tratados médicos de referencia para las civilizaciones posteriores.

Un siglo después surgió la nueva ciencia experimental de la alquimia a partir de la metalurgia. Sin embargo, hacia el año 300, la alquimia fue adquiriendo un tinte de secretismo y simbolismo que redujo los avances que sus experimentos podrían haber proporcionado a la ciencia.

La Ciencia Medieval Y Renacentista

Durante la edad media existían seis grupos culturales principales: en lo que respecta a Europa, de un lado el Occidente latino y, de otro, el Oriente griego (o bizantino); en cuanto al continente asiático, China e India, así como la civilización musulmana (también presente en Europa), y, finalmente, en el ignoto continente americano, desligado del resto de los grupos culturales mencionados, la civilización maya. El grupo latino no contribuyó demasiado a la ciencia hasta el siglo XIII; los griegos no elaboraron sino meras paráfrasis de la sabiduría antigua; los mayas, en cambio, descubrieron y emplearon el cero en sus cálculos astronómicos, antes que ningún otro pueblo. En China la ciencia vivió épocas de esplendor, pero no se dio un impulso sostenido. Las matemáticas chinas alcanzaron su apogeo en el siglo XIII con el desarrollo de métodos para resolver ecuaciones algebraicas mediante matrices y con el empleo del triángulo aritmético. Pero lo más importante fue el impacto que tuvieron en Europa varias innovaciones prácticas de origen chino. Entre ellas estaban los procesos de fabricación del papel y la pólvora, el uso de la imprenta y el empleo de la brújula en la navegación. Las principales contribuciones indias a la ciencia fueron la formulación de los numerales denominados indoarábigos, empleados actualmente, y la modernización de la trigonometría. Estos avances se transmitieron en primer lugar a los árabes, que combinaron los mejores elementos de las fuentes babilónicas, griegas, chinas e indias. En el siglo IX Bagdad, situada a orillas del río Tigris, era un centro de traducción de obras científicas y en el siglo XII estos conocimientos se transmitieron a Europa a través de España, Sicilia y Bizancio.

En el siglo XIII la recuperación de obras científicas de la antigüedad en las universidades europeas llevó a una controversia sobre el método científico. Los llamados realistas apoyaban el enfoque platónico, mientras fue los nominalistas preferían la visión de Aristóteles. En las universidades de Oxford y París estas discusiones llevaron a descubrimientos de óptica y cinemática que prepararon el camino para Galileo y para el astrónomo alemán Johannes Kepler.

La gran epidemia de peste y la guerra de los Cien Años interrumpieron el avance científico durante más de un siglo, pero en el siglo XVI la recuperación ya estaba plenamente en marcha. En 1543 el astrónomo polaco Nicolás Copérnico publicóDe revolutionibus orbium caelestium (Sobre las revoluciones de los cuerpos celestes), que conmocionó la astronomía. Otra obra publicada ese mismo año,Humani corporis fabrica libri septem (Siete libros sobre la estructura del cuerpo humano), del anatomista belga Andrés Vesalio, corrigió y modernizó las enseñanzas anatómicas de Galeno y llevó al descubrimiento de la circulación de la sangre. Dos años después, el libro Ars magna (Gran arte), del matemático, físico y astrólogo italiano Gerolamo Cardano, inició el periodo moderno en el álgebra con la solución de ecuaciones de tercer y cuarto grado.

La Ciencia Moderna

Esencialmente, los métodos y resultados científicos modernos aparecieron en el siglo XVII gracias al éxito de Galileo al combinar las funciones de erudito y artesano. A los métodos antiguos de inducción y deducción, Galileo añadió la verificación sistemática a través de experimentos planificados, en los que empleó instrumentos científicos de invención reciente como el telescopio, el microscopio o el termómetro. A finales del siglo XVII se amplió la experimentación: el matemático y físico Evangelista Torricelli empleó el barómetro; el matemático, físico y astrónomo holandés Christiaan Huygens usó el reloj de péndulo; el físico y químico británico Robert Boyle y el físico alemán Otto von Guericke utilizaron la bomba de vacío.

La culminación de esos esfuerzos fue la formulación de la ley de la gravitación universal, expuesta en 1687 por el matemático y físico británico Isaac Newton en su obra Philosophiae naturalis principia mathematica (Principios matemáticos de la filosofía natural). Al mismo tiempo, la invención del cálculo infinitesimal por parte de Newton y del filósofo y matemático alemán Gottfried Wilhelm Leibniz sentó las bases de la ciencia y las matemáticas actuales.

Los descubrimientos científicos de Newton y el sistema filosófico del matemático y filósofo francés René Descartes dieron paso a la ciencia materialista del siglo XVIII, que trataba de explicar los procesos vitales a partir de su base físico-química. La confianza en la actitud científica influyó también en las ciencias sociales e inspiró el llamado Siglo de las Luces, que culminó en la Revolución Francesa de 1789. El químico francés Antoine Laurent de Lavoisier publicó el Tratado elemental de química en 1789 e inició así la revolución de la química cuantitativa.

Los avances científicos del siglo XVIII prepararon el camino para el siguiente, llamado a veces “siglo de la correlación” por las amplias generalizaciones que tuvieron lugar en la ciencia. Entre ellas figuran la teoría atómica de la materia postulada por el químico y físico británico John Dalton, las teorías electromagnéticas de Michael Faraday y James Clerk Maxwell, también británicos, o la ley de la conservación de la energía, enunciada por el físico británico James Prescott Joule y otros científicos.

A mediados del siglo XIX el imperio de la Razón brillaba en todo su esplendor. El programa de la Ilustración parecía plenamente realizado ante los ojos de la burguesía europea, que sobrepuesta del sobresalto de las revoluciones de 1848 consolidaba su poder político, afianzado ya su poderío económico. La publicación en 1849 del Discurso sobre el espíritu positivo de Augusto Comte constituía la expresión del espíritu de la época. Los avances de la ciencia y el progreso tecnológico a ellos asociado parecían augurar un brillante porvenir. Esta confianza en el futuro, esa fe en el Progreso, que descansaba en los logros alcanzados por la Razón, proporcionaba a las clases dirigentes del Viejo Continente la firme convicción de estar llamadas desempeñar una misión histórica, ahora ratificada sobre bases científicas, de la superioridad de la raza blanca y de la civilización por ella engendrada, que servirá de cobertura ideológica a la expansión de los imperios europeos. La aparición de El Origen de las especiesde Darwin en 1859 y de El origen de la familia, la propiedad privada y el Estado de Federico Engels en 1884, marcan la culminación de este proceso, que caracteriza a la civilización occidental desde la aparición de la época moderna. Determinismo biológico y determinismo social completan el recorrido intelectual de Occidente iniciado con la revolución newtoniana.

EL IMPERIO DE LA RAZÓN

Los hombres de la Ilustración eran conscientes de que su programa de refundación del conocimiento encontraba su máxima justificación en la revolución newtoniana, en tanto ésta alteraba radicalmente los fundamentos del conocimiento científico hasta entonces vigente. El lugar central asignado a la ciencia en La Enciclopedia y su explícita reivindicación de fundar sobre nuevas bases todo el sistema del conocimiento así lo atestiguan.

El gran éxito del sistema newtoniano a la hora de explicar los procesos físicos relacionados con el movimiento de los cuerpos y del sistema solar, así como el método científico empleado en losPrincipia, explican el vigor de la Filosofía Natural propuesta por Newton. El papel desempeñado por la Mecánica en el sistema newtoniano hizo que la representación mecanicista de la Naturaleza se transformase en dominante en la cultura occidental desde mediados del siglo XVIII.

La representación determinista, culminación del proyecto de la Ilustración.

Lo que en Newton eran meros postulados en Kant adquirió el rango de absoluto. La extraordinaria influencia que tuvo la filosofía kantiana durante la primera mitad del siglo XIX contribuyó decisivamente a que los físicos y matemáticos tomaran las leyes de la Física clásica por absolutamente necesarias. El concepto de Naturaleza defendido por Kant se constituyó así en la concepción dominante de la cultura occidental hasta la aparición de la Teoría de la Relatividad y la Mecánica Cuántica durante el primer tercio del presente siglo, instalándose en el centro de la episteme de la época moderna.

El darwinismo y el determinismo biológico.

La aparición de la teoría evolucionista de Darwin fue interpretada como la culminación de la representación determinista, tal como afirmó el gran físico vienés Ludwig Boltzmann en su conferencia ante la Academia Imperial de la Ciencia, el 29 de mayo de 1886: "Si ustedes me preguntan por mi convicción más íntima, sobre si nuestra época se conocerá como el siglo del acero, o siglo de la electricidad o del vapor, les contestaré sin dudar que será llamado el siglo de la visión mecanicista de la naturaleza, el siglo de Darwin".



Entre 1830 y 1859, año de la aparición de El Origen de las especies de Darwin, se desarrolló en Gran Bretaña un intenso debate sobre el problema del origen de los organismos, marcado por la necesidad que sentían los hombres de ciencia de encontrar una teoría metacientífica que permitiera explicar los fenómenos, y entre ellos el origen de las especies, sobre la base de la existencia de leyes naturales que debían regirse por los criterios científicos establecidos por la física newtoniana.

LA REVOLUCIÓN DE LOS FUNDAMENTOS DE LA RAZÓN MODERNA

Llegados a este punto es preciso apuntar que la crisis de los fundamentos que tuvo lugar durante el último tercio del siglo XIX no puede ser contemplada como la crisis de la Modernidad, entendida ésta como la destrucción de los fundamentos epistemológicos que estructuraron el Saber moderno. Tuvo que desarrollarse la revolución científica de la física contemporánea, mediante la aparición de la Teoría de la Relatividad y de la Mecánica Cuántica para que esta crisis de los fundamentos desembocara en revolución de los fundamentos sobre los que se asentaban presupuestos epistemológicos básicos que habían configurado la episteme clásica, razón de ser de las formas del Pensar que han dominado la cultura occidental en los últimos tres siglos.

La Teoría de la Relatividad: la destrucción del Tiempo y del Espacio absolutos.

Los motivos aducidos por Einstein, en su artículo de 1905, para formular la Teoría Especial de la Relatividad, sólo mencionan de manera genérica y de pasada algunos problemas de carácter práctico. Sobre una base tan vaga -que no hace sino confirmar que las inquietudes de Einstein no residían fundamentalmente en problemas de carácter experimental- estableció que "las mismas leyes de la electrodinámica y de la óptica son válidas en todos los sistemas de referencia para los que son ciertas las ecuaciones de la mecánica". Esta conjetura fue elevada a la categoría de postulado como Principio de Relatividad; al que seguió un segundo postulado: "la constancia de la velocidad de la luz en el vacío independientemente del estado de movimiento del cuerpo emisor". Mediante estos dos postulados Einstein consideró que era posible "obtener una teoría simple y coherente de la electrodinámica de los cuerpos en movimiento basada en la teoría de Maxwell para los cuerpos estacionarios", eliminando la problemática existencia del éter, que durante la segunda mitad del siglo XIX no había hecho sino complicar extraordinariamente la teoría electromagnética, debido a la necesidad de encontrar un medio que fuera soporte de las ondas electromagnéticas: "la introducción de un éter lumífero resultará superfluo en tanto en cuanto la concepción que aquí vamos a desarrollar no requiere un espacio absolutamente necesario provisto de propiedades especiales, ni necesita asignar un vector velocidad a un punto del espacio vacío en el que tienen lugar los procesos electromagnéticos".

La mecánica cuántica: la destrucción de la validez universal del principio de causalidad estricto.

Si bien la teoría de la Relatividad eliminó algunos de los presupuestos epistemológicos básicos de la física clásica, como el espacio y el tiempo absolutos, sobre los que se asentaba la representación moderna del Universo, no puso en cuestión la representación determinista de la Naturaleza característica de la época Moderna. Ésta se asentaba en la validez universal del principio de causalidad clásico, cuyas premisas no quedaban afectadas por la revolución relativista, no resultando afectado, pues, el criterio de realidad dominante en la física moderna, postulado básico de la teoría del conocimiento desarrollada en la época Moderna.

Sin embargo, este pilar fundamental del Saber moderno pronto se vería sometido a una profunda crisis, como consecuencia del desarrollo de la Mecánica Cuántica, que cuestionó seriamente la validez universal del principio de causalidad clásico, arrastrando con ello el criterio de realidad sobre el que se había desarrollado la física moderna. El inicio de esta fractura epistemológica se sitúa en la introducción del cuanto de acción por Max Planck en 1900, resultado de su investigación sobre el problema de la radiación del cuerpo negro.

Vea el cuadro resumen de 500 años de evolución de la ciencia, aunque incompleto debido a lo complejo del diagrama es un buen resumen. Haga clic sobre la imagen para agradarla y poder ver en detalle.

Fuentes:
(1) http://www.proyectosandia.com.ar/2010/08/que-es-y-que-no-es-la-ciencia.html
(2) Vargas-Mendoza, J. E. (2008) ¿Qué es la ciencia?. México: Asociación Oaxaqueña de Psicología A.C. Enhttp://www.conductitlan.net/que_es_la _ciencia.ppt
(3) Isaac Asimov. Introducción a la ciencia. Si desea explorar la obra completa consulta:http://www.librosmaravillosos.com/introduccionciencia/vol01cap01.html

VIRUS


Si bien los virus no podríamos considerarlos células porque requieren de otro organismo (infectarlo) para poderse propagar es una entidad de alguna forma viva pero que al requerir de otro, generalmente una célula o bacteria. No son una forma de vida autónoma como si es una célula, sin embargo entran dentro de una categoría muy singular y es el de ser una forma de vida acelular. Hay infinidad de virus y aunque ver un virus es muy complicado pues no se pueden observar mediante un microscopio óptico, hay tal variedad que al momento se han identificado unos 5000, pero su número para algunos expertos podrían ser millones. Se encuentran en todos los hábitat y pueden infectar o “convivir” prácticamente con todos los organismos desde los microorganismos mas simples hasta las plantas y los animales. Su forma de propagación es muy variada asociada muchas veces a vectores que los puedan trasmitir. Así que amigos veamos un poco mas acerca de estas estructuras.


¿Qué es un virus?

En biología, un virus (del latín virus, «toxina» o «veneno») es una entidad infecciosa microscópica que sólo puede multiplicarse dentro de las células de otros organismos. Los virus infectan todos los tipos de organismos, desde animales y plantas hasta bacterias y arqueas. Los virus son demasiado pequeños para poder ser observados con la ayuda de un microscopio óptico, por lo que se dice que son submicroscópicos. El primer virus conocido, el virus del mosaico del tabaco, fue descubierto por Martinus Beijerinck en 1899,y actualmente se han descrito más de 5.000, si bien algunos autores opinan que podrían existir millones de tipos diferentes. Los virus se hallan en casi todos los ecosistemas de la Tierra y son el tipo de entidad biológica más abundante. El estudio de los virus recibe el nombre de virología, una rama de la microbiología.

A diferencia de los priones y viriones, los virus se componen de dos o tres partes: su material genético, que porta la información hereditaria, que puede ser ADN o de ARN; una cubierta proteica que protege a estos genes —llamada cápside— y en algunos también se puede encontrar una bicapa lipídica que los rodea cuando se encuentran fuera de la célula —denominada envoltura vírica—. Los virus varían en su forma, desde simples helicoides o icosaedros hasta estructuras más complejas. El origen evolutivo de los virus aún es incierto, algunos podrían haber evolucionado a partir de plásmidos (fragmentos de ADN que se mueven entre las células), mientras que otros podrían haberse originado desde bacterias. Además, desde el punto de vista de la evolución de otras especies, los virus son un medio importante de transferencia horizontal de genes, la cual incrementa la diversidad genética.[9]

Los virus se diseminan de muchas maneras diferentes y cada tipo de virus tiene un método distinto de transmisión. Entre estos métodos se encuentran los vectores de transmisión, que son otros organismos que los transmiten entre portadores. Los virus vegetales se propagan frecuentemente por insectos que se alimentan de su savia, como los áfidos, mientras que los virus animales se suelen propagar por medio de insectos hematófagos. Por otro lado, otros virus no precisan de vectores: el virus de la gripe (rinovirus) se propaga por el aire a través de los estornudos y la tos y los norovirus son transmitidos por vía fecal-oral, o a través de las manos, alimentos y agua contaminados. Los rotavirus se extienden a menudo por contacto directo con niños infectados. El VIH es uno de los muchos virus que se transmiten por contacto sexual o por exposición con sangre infectada. 

Los virus son un reino de parásitos intracelulares obligatorios, de pequeño tamaño, de 20 a 500 milimicras, constituidos sólo por dos tipos de moléculas: un ácido nucleico y varias proteínas. El ácido nucleico, que puede ser ADN o ARN, según los tipos de virus, está envuelto por una cubierta de simetría regular de proteína, denominada cápside.

Los huéspedes que ocupan pueden ser animales, vegetales o bacterias. Entre los microorganismos, los virus parasitan bacterias, son los bacteriófagos o fagos, pero no se conocen virus que infecten algas, hongos o protozoos. Entre los vegetales, sólo se han encontrado infecciones por virus en las plantas con flores, pero no en las plantas inferiores. Entre los animales, se conocen muchos que parasitan vertebrados, pero entre los invertebrados, sólo se han encontrado en artrópodos.

Las enfermedades humanas, causadas por virus, más conocidas, son la poliomielitis, gripe, viruela, sarampión, fiebre amarilla, encefalitis, paperas, tracoma, etc. Actualmente se cree que algunos tumores cancerosos son también de origen vírico. Las infecciones víricas en general, no pueden ser tratadas con antibióticos; sin embarco, el interferón, producto biológico sintetizado por los tejidos invadidos por un virus, es activo contra infecciones causadas por otros.

Los virus más conocidos de todos son los fagos, debido a la gran facilidad técnica del cultivo de bacterias, comparado con el cultivo de tejidos o embriones. Su ciclo vital es el siguiente: la partícula del fago se fija en determinados puntos de la pared de la bacteria y la molécula de ácido nucleico, junto con algunas proteínas enzimáticas, es inyectada dentro de la bacteria y queda fuera la cápsula proteica vacía. Después de esta penetración, la célula infectada deja de producir sus proteínas y se pone a fabricar las del fago, que, de ese modo, va haciendo copias de su ácido nucleico y de las subunidades proteicas de la cápsula, que se reúnen para constituir las partículas completas; cuando éstas se han acumulado en un cierto número, la bacteria se rompe y libera los virus, que van a infectar las células próximas.

Estructura y composición de un virus

Los virus pueden tener distintos tipos de ácidos nucleicos y las moléculas de éstos pueden presentar diversas formas. Así pueden contener ADN o ARN. Tanto uno como el otro pueden estar formados por una sola cadena, siendo entonces monocatenarios, o por dos, bicatenarios. Las moléculas de ácido nucleico pueden ser circulares o lineales. Algunos virus presentan el genoma fragmentado como ocurre con el virus de la gripe que posee ocho fragmentos de ARN monocatenario. En algunos casos, pueden aparecer bases anormales como el 5 hidroximetiluracilo. 
Puesto que el ARN mensajero de una célula es el que traduce para sintetizar proteínas, se dice que esta molécula tiene polaridad +. Del mismo modo, si el ácido nucleico monocatenario de un virus presenta la misma polaridad que el ARN mensajero, se dice que es de cadena positiva (+) , y si la polaridad es la contraria, se dice que es de cadena negativa (-). Los ácidos nucleicos bicatenarios tienen a la vez polaridad positiva y negativa. 
La cantidad de ácido nucleico en el virión varía desde el 1% al 50% de sus proteínas. La cantidad de genes va desde 4 en virus pequeños (como el MS2) hasta varios centenares de genes en virus grandes.

Cápsida

La cápsida es la estructura proteica que rodea al ácido nucleico. El conjunto formado por el ácido nucleico y la cápsida recibe el nombre de nucleocápsida vírica. En algunos virus la cápsida está formada por un solo tipo de proteínas, pero en la mayoría está formada por la asociación de varias cadenas polipeptídicas distintas. Las cadenas polipeptídicas se asocian y dan lugar a las unidades morfológicas de la cápsida, los capsómeros.

La forma de los virus viene determinada por la forma de unión de los capsómeros. La organización más sencilla corresponde a los virus helicoidales, en los que los capsómeros, formados por un único tipo de proteínas, se disponen en torno al ácido nucleico y dan lugar a estructura cilíndrica.

Los virus de aspecto globoso tienen estructura poliédrica. Los más simples de este tipo son los icosaédricos, que poseen 20 caras, cada una de las cuales es un triángulo equilátero formado por la unión de tres proteínas distintas. Cuanto mayor sea el número de caras, más esférico parece el virus.

Los virus complejos son el resultado de combinar ambas estructuras. Poseen una porción poliédrica, que recibe el nombre de cabeza, en cuyo interior se encuentra el ácido nucleico, y una helicoidal que constituye la cola. Algunos virus poseen una placa basal y, además, espículas y fibras que le ayudan a unirse a la célula que van a infectar.

Envoltura o cubierta

En algunos casos la nucleocápsida está envuelta por una membrana. Esta membrana está constituida por una bicapa lipídica que procede de la célula hospedadora y por proteínas insertadas en la bicapa codificadas por el genoma vírico. Algunas de estas proteínas, que generalmente son glucoproteínas, sobresalen de la envoltura y forman la estructura conocida como espículas.

La cubierta o envoltura vírica está implicada en el reconocimiento entre la partícula vírica y su célula hospedadora. Los virus que poseen cubierta se llaman virus envueltos, y los que carecen de ella, virus desnudos.

Enzimas de los viriones

A pesar de que los viriones no tienen capacidad metabólica, algunos poseen enzimas, como pueden ser las polimerasas, para transcribir el ácido nucleico vírico a ARN mensajero, una vez dentro del hospedador. Otros poseen una polimerasas, para transcribir el ácido nucleico vírico a ARNm, una vez dentro del hospedador. Otros poseen una polimerasa que transcribe el ARN en ADN, al contrario de lo que ocurre generalmente. Por esta razón, este enzima recibe el nombre de transcriptasa inversa. Otros contienen enzimas que posibilitan la entrada y salida de los virus de las células que parasitan. Así, algunos virus animales contienen neuraminidasas que destruyen enlaces glucosídicos de glucoproteínas y glucolípidos de la membrana plasmática del hospedador; algunos bacteriófagos poseen lisozima, la cual les permite hacer un hueco en la pared bacteriana para facilitar la entrada del ácido nucleico y romper la célula al finalizar la infección. (3)

Clasificación de los virus

Los virus no se clasifican en ninguno de los 5 reinos propuestos por Whittaker debido a que no tienen organización celular, y utilizan los procesos anabólicos de las células hospedadoras para su replicación. Tampoco se ubican en ninguno de los 3 dominios propuestos por Woese. 

El ICTV (Comité Internacional de Taxonomía de Virus) propuso un sistema universal de clasificación viral. El sistema utiliza una serie de taxones como se indica a continuación: 
Orden (-virales). 
Familia (-viridae) 
Subfamilia (-virinae) 
Genero (-virus) 
Especie ( ). 

Los virus se agrupan en familias y subfamilias cuyo nombre se ha latinizado; por ejemplo, los virus herpes se agrupan en la familia Herpesviridae. Las subfamilias tienen el sufijo -nae-, Ej: Herpesvirinae. 
El otro tipo de agrupación es el género, que no se nombra en forma latinizada, por ejemplo, herpesvirus. 
Por ejemplo, el virus Ebola de Kikwit se clasifica como: 
Orden: Mononegavirales 
Familia: Filoviridae 
Género: Filovirus 
Especie: virus Ebola zaire 

Los criterios utilizados en este sistema de clasificación son: 
a) Tipo y naturaleza del genoma. (ADN; ARN
b) Morfología de la partícula vírica o virión: simetría de la nucleocápsula, presencia de envoltura. 
c) Mecanismo de replicación Hospedero 
Otro sistema de clasificación se basa en la capacidad de infectar determinadas células huésped y de acuerdo con ello se subdividen en tres clases principales: virus animales, virus bacterianos o bacteriófagos y virus de las plantas.

Otra forma de clasificación es por su forma:
Por su forma: Virus helicoidales como el virus del mosaico del tabaco, los poliédricos como el de la gripe y los complejos como el bacteriófago T4.
Presencia o no de cubierta: Virus envueltos como el Herpes simples y virus desnudos como el virus de la polio.
Tipo de célula que parasitan: animales, vegetales y bacteriófagos o fagos.
Tipo de ácido nucleico: esta clasificación es más compleja por ejemplo virus con ADN monocatenario, ADN bicatenario, ARN onocatenario, AR bicatenario. Además puede ser lineal o circular y con polaridad +, – o .

Ciclo de vida de los virus

El ciclo vital de los virus consta de las siguientes cuatro fases: entrada en la célula, eclipse, multiplicación y liberación del virus. Veremos primero el ciclo vital de un virus, explicado de la forma más general posible, para pasar a continuación a estudiar las diversas modalidades que pueden presentarse en cada una de las fases del ciclo. 

1. Entrada 
La entrada en la célula consta a su vez de dos etapas: la adsorción o fijación del virus en la superficie celular, y lapenetración a través de la membrana. 
En la fase de fijación el virus se une a la membrana de la célula hospedadora de forma estable. Hay una alta especificidad en la fijación de un virus a la membrana de su célula hospedadora, porque se ha de producir la unión entre determinadas proteínas de lacápsida vírica y determinadas glicoproteínas de la membrana plasmática de la célula que lo hospeda. A lo largo de un proceso evolutivo, cada virus ha ido adquiriendo sitios de unión específicos para anclarse en la membrana de un determinado tipo celular. 
La penetración o inyección a través de la membrana sigue diversas modalidades. Como resultado, bien el virus completo, bien solamente su ácido nucleico, logra invadir elcitoplasma celular. Por regla general, se necesita el concurso de muchos virus para que alguno de ellos logre penetrar en la célula. 

2. Eclipse 

La fase de eclipse corresponde a un tiempo, después de la penetración, en que el virus parece desaparecer, pues no se advierte ningún indicio de su presencia ni de su actividad. Lo que ocurre en esta fase es que se da un desensamblaje de las piezas del virus (si es que ha penetrado completo), y su ácido nucleico queda asimilado en las estructuras celulares aptas para los procesos de replicación y trascripción. 
Esta fase, variable de unos tipos de virus a otros. Durante esta fase se produce la síntesis del ARN, necesario para generar las copias de proteínas de la cápsida. También se produce la continua formación de ácidos nucleicos virales y enzimas destructoras del ADN bacteriano. Termina con la síntesis de los ARNm necesarios para que se sinteticen las proteínas que actuarán en la multiplicación del virus. 

3. Multiplicación y ensamblaje 

La multiplicación del virus consiste tanto en la replicación de su ácido nucleico, como en la síntesis de las proteínas de la cápsida. Los ácidos nucleicos y las proteínas recién sintetizadas se ensamblan rápidamente, produciéndose nuevas partículas víricas. En esta fase se produce la unión de los capsómeros para formar la cápsida y el empaquetamiento del ácido nucleico viral dentro de ella. 

4. Liberación y Lisis 

La liberación del virus consiste en la salida de las nuevas partículas víricas o viriones, que podrán infectar nuevas células iniciando un nuevo ciclo. Los viriones salen de la célula, mediante la lisis o ruptura enzimática de la pared bacteriana que conlleva a la muerte celular. Los nuevos virus se encuentran en situación de infectar una nueva célula.

Veamos una excelente animación en donde se puede observar el proceso de penetración en la celula, uso de su material genetico para reproducirse y su posterior liberación para continuar el ciclo de infección. ( Proyecto biosfera)


Enfermedades virales

Los virus son causantes de enfermedades infecciosas en el hombre como son: la viruela, la gripe, la hepatitis, las paperas, la rabia, la poliomielitis, el SIDA, el sarampión, la encefalitis, la rubéola, el herpes, la fiebre amarilla ésta última transmitida por un vector; en los animales originan el moquillo, la rabia, la influenza, la encefalitis, el cólera; y en las plantas enfermedades como el virus del mosaico del tabaco y el virus del mosaico amarillo del nabo entre otras. 
Los mecanismos de transmisión son diversos algunos por vía respiratoria cuando la persona enferma estornuda o tose; otros a través de picaduras de insectos es el caso de la fiebre amarilla; o por mordedura de animales enfermos como en el caso de la rabia; los que causan trastornos digestivos por vía oral-fecal y por inoculación con jeringas u objetos infectados, por transfusión de sangre contaminada, por relaciones sexuales sin protección y por último a través de la madre al hijo durante el embarazo o en el momento del parto. En el caso de las plantas la transmisión se hace por insectos o nematodos. 
Los medios para prevenir la infección viral son las vacunas que causan inmunidad, evitar el contacto con personas infectadas, esterilización de objetos, uso de jeringas desechables.

Las mejoras en el nivel de salud pública e higiene personal contribuyen en forma muy importante y efectiva a controlar la diseminación de las enfermedades infecciosas, incluyendo las causadas por virus. Sin embargo, las vacunas tienen un papel primordial en la prevención activa de las enfermedades virales en el hombre y en los animales.

Las vacunas pueden ser infecciosas (hechas con virus activos) o no infecciosas (hechas con virus inactivados).

El proceso de vacunación se basa en la idea de que se puede lograr inmunidad específica contra una enfermedad, en particular si se provoca ésta en condiciones controladas de manera que el individuo no padece los síntomas asociados con la enfermedad y el sistema inmune reacciona produciendo un arsenal de anticuerpos y células inmunes con capacidad para destruir o neutralizar cualquiera otra invasión por parte del mismo agente infeccioso.

El principal problema de las vacunas preparadas con virus atenuados consiste en garantizar la estabilidad genética de la cepa avirulenta, de manera que no revierta en forma espontánea o accidental al estado virulento. Esta reversión al estado virulento puede ocurrir por causa de eventos de recombinacion genética espontánea entre el virus presente en la vacuna y algún otro tipo de virus que pueda estar presente en forma natural en el individuo vacunado.

Las vacunas deben producir inmunidad suficiente y permanente, pues de lo contrario el virus invasor puede ser capaz de multiplicarse. Esto último ocurre en el caso de vacunas, como la vacuna contra la fiebre aftosa del ganado, la cual sólo confiere inmunidad parcial y por lo tanto actúa como una presión selectiva que favorece la propagación de virus mutantes poseedores de nuevos variantes antigénicos no reconocidos por los anticuerpos inducidos por la vacuna. Con el paso del tiempo, la cepa de virus resistentes sustituye a los otras cepas del virus y entonces se hace necesario desarrollar una nueva vacuna específica contra esta nueva cepa resistente a la vacuna anterior.

Las vacunas pueden ser administradas por vía oral, vía parenteral (inyectadas) o por simple escarificación de la piel con una aguja. La vía de administración depende del tipo de preparación y de la estabilidad física de la misma.

El surgimiento de la tecnología del ADN recombinante o ingeniería genética abre las puertas a la posibilidad de desarrollar vacunas efectivas preparadas a partir de los componentes virales causantes de inducir la respuesta inmune, pero sin los inconvenientes asociados con la presencia de virus íntegros, ya sea que estén inactivados o atenuados.

A diferencia de lo que sucede con las infecciones bacterianas, la quimioterapia de las infecciones virales todavía se encuentra en etapas primitivas. La multiplicación de losvirus está estrechamente ligada al metabolismo de la célula hospedera debido a que el virus por lo general utiliza la propia maquinaria celular para su replicación. Por lo tanto, resulta difícil encontrar fármacos y compuestos químicos capaces de afectar las funciones virales sin afectar a la célula hospedera.

Enfermedades producidas por virus

- Virus Respiratorio Sincicial o Sinticial (VRS)


Víctimas del virus Sincicial.

El VRS es el mayor patógeno de vías respiratorias en pediatría. Aparece en brotes epidémicos anuales a partir de abril de cada año, alcanzando su máxima incidencia entre julio y agosto.

Es importante la trasmisión nosocomial del VRS.

Descripción del virus

El virus tiene de 90 a 120 nm de diámetro, pertenece a la familia de losParamyxoviridae, género Pneumovirus, es un virus RNA de cadena única. No tiene hemaglutinina ni neuroaminidasa.

Trasmisión

Se trasmite por aerosoles o por contacto con material infeccioso, directo o depositado en superficies, cunas, manos del personal al cuidado de unidades de lactantes. Tiempo de incubación: De tres a seis días. El paciente sigue siendo infeccioso hasta casi 2 semanas del inicio de la infección.

Síntomas

Coriza, tos, distress respiratorio. Fiebre moderada. Hipoxemia.

Complicaciones: Se relaciona la infección por VRS en los primeros meses de vida con la aparición posterior de asma bronquial. También un 20 por ciento de los pacientes desarrollan otitis media viral.

Tratamiento

Se dispone de la ribavirina, para el tratamiento de infecciones por VRS en pacientes con complicaciones sobreañadidas: cardiópatas, trasplantados… Ya que hay que valorar sus efectos tóxicos frente a sus posibles beneficios. Vacunación: No son totalmente efectivas en la actualidad.

Se conocen más de doscientos tipos de virus pero en general no se les ha denominado en forma específica. 


- Virus de inmunodeficiencia humana (VIH)


¿Qué es el VIH?
Agente causal del SIDA.
El VIH pertenece a la familia de los retrovirus. Normalmente el ADN (ácido desoxirribonucléico) manda mensajes al ARN (ácido ribonucléico), pero en el caso de un retrovirus, el ARN esta convertido en el DNA.
Existen dos sub-tipos del VIH: tipo 1 (HIV-1) y tipo 2 (HIV-2). Se encuentra el tipo 2 mayormente en Africa del Oeste. 
El VIH es un lentivirus, lo cual significa que permanece mucho tiempo en estado latente.
El VIH destruye las células inmunológicas (CD4) así que diversas infecciones y cánceres pueden entrar el cuerpo humano sin defensa. Estas enfermedades se llaman enfermedades oportunistas.
El virus no puede sobrevivir mucho tiempo afuera del cuerpo humano y por eso puede transmitirse solamente de persona a persona, de las siguientes maneras:

por tener relaciones sexuales con una persona que vive con el VIH/SIDA sin la protección de condón.
por recibir sangre, sus derivados u órganos de una persona que vive con el VIH/SIDA (incluyendo el uso compartido de jeringas).
de una mujer embarazada que vive con el VIH/SIDA a su hijo durante el gestación, el parto o en la lactancia materna.
La carga viral funciona como un indicador del avance y pronostico de la enfermedad.
La cantidad de las células CD4 indica cuanto daño ya ha causado el VIH.

Vías de transmisión

El VIH no puede sobrevivir mucho tiempo fuera del cuerpo humano, y por eso solamente se transmite entre personas.

Las tres vías de transmisión son:
Transmisión sexual: relaciones sexuales sin condón con personas que viven con el VIH-SIDA.
Transmisión a través de sangre y productos de sangre contaminados con el virus, o herirse con instrumentos cortopunzantes infectados (vía parenteral o sanguínea). Este vía incluye entre otras cosas transfusiones de sangre o productos de sangre, uso de agujas contaminadas y tatuajes.
Transmisión vertical de una madre que vive con el VIH a su hijo a través de la placenta durante el embarazo, durante el parto o en la lactancia a través de la leche materna (vía perinatal o materno-infantil).

No se transmite el VIH por:
Compartir baños con otras personas o con personas que viven con el VIH-SIDA
Compartir alimento y utensilios de cocina con otras personas o con personas que viven con el VIH-SIDA
Picadura de insectos
Por compartir vida social
Por compartir el ambiente del trabajo
Abrazos, apretón de manos, besos
Abrazar, besar o cuidar de una persona que vive con el VIH-SIDA

Entonces, el contacto social con personas que viven con el VIH-SIDA no contiene riesgo de transmisión del VIH. El VIH solamente se transmite por vía sexual, parenteral y perinatal.

Detección

Cuando el VIH entra el cuerpo humano ocurre un proceso de infección entre el virus y los linfocitos T del sistema inmunológico; los linfocitos T producen anticuerpos como reacción de ataque ante la presencia del VIH. Se puede detectar estos anticuerpos mediante la prueba ELISA. Cuando esta prueba resulta positiva, se hace otra prueba de ELISA. Cuando estas dos pruebas resultan positivas se debe hacer una prueba confirmatoria, el Western blot.

Otras enfermedades por virus 

Enfermedad Agente Principales síntomas
Dengue - Flavivirus Fiebre, dolor intenso en las articulaciones y músculos, inflamación de los ganglios linfáticos y erupción ocasional de la piel
Fiebre amarilla - Flavivirus Fiebre alta, ictericia, sangrado de nariz y boca, vómito negro, bradicardia a pesar de la fiebre, deshidratación
Fiebre hemorrágica de Ébola - Filovirus Fiebre alta, postración, mialgia, artralgias, dolor abdominal, cefalea, erupciones hemorrágicas en todo el cuerpo.
Gripe - Influenzavirus Fiebre, astenia, anorexia, cefalea, malestar general, tos seca, dolor de garganta; gastroenteritis, vómitos, diarrea
Hepatitis A, B,C A: Enterovirus(VHA); B:Orthohepadnavirus(VHB); C:Hepacivirus(VHC) Inflamación del hígado; fiebre, cansancio, náuseas, diarrea
Herpes - Herpesvirus Ampollas cutáneas en la boca (herpes labial), en los genitales (herpes genital) o en la piel (herpes zóster)
Mononucleosis - Virus de Epstein-Barr Fiebre, faringitis, inflamación de los ganglios linfáticos, fatiga
Parotiditis(Paperas) - Paramixovirus Fiebre, cefalea, dolor e inflamación de las glándulas salivales
Peste porcina - Pestivirus Fiebre, anorexia, leucopenia, temblores, parálisis, muerte
Poliomielitis - Enterovirus Inflamación en las neuronas motoras de la columna vertebral y del cerebro que ocasiona parálisis y atrofia muscular
Rabia - Rhabdovirus Fiebre, vómitos, confusión, agresividad, alucinaciones, convulsiones, parálisis, diplopía, hidrofobia, coma y muerte
Resfriado común - Rinovirus,Coronavirus,Ecovirus,Coxsackievirus Estornudos, secreción, congestión y picor nasal, dolo de garganta, tos, cefalea, malestar general
Rubéola - Rubivirus Fiebre, cefalea, erupciones en la piel, malestar general, enrojecimiento de los ojos, faringitis, inflamación dolorosa de ganglios alrededor de la nuca
Sarampión - Morbillivirus Fiebre, erupciones en la piel, tos, rinitis; diarrea, neumonía, encefalitis
Varicela - Varicela-zoster Fiebre, cefalea, malestar general, anorexia, erupción cutánea en forma de ampollas
Viruela - Orthopoxvirus Fiebre alta, malestar, cefalea, fuerte erupción cutánea en forma de pústulas, que dejan graves cicatrices en la piel


Actividades y recursos 

- Entra a la página de Discovery en la Escuela, una excelente estrategia educativa que permite poder trabajar el video en el aula de clase, baja la guía “todo sobre los virus”. Recuerda que para poder acceder a ella te tienes que inscribir en la página. 







Fuentes:

(1) http://es.wikipedia.org/wiki/Virus
(2) http://www.duiops.net/seresvivos/virus.html
(3)http://www.google.com.co/url?sa=t&source=web&cd=2&ved=0CBwQFjAB&url=http%3A%2F%2Fpersonal.telefonica.terra.es%2Fweb%2Felarcondemariajo%2FMariajo%2FVIRUS.doc&rct=j&q=composicion%20de%20un%20virus&ei=_UJ6TaqeHYSdlgepopSPBg&usg=AFQjCNFrTdHi91xYbk5wmFscF_W_ev09Vw&cad=rja
(4)http://www.unad.edu.co/fac_ingenieria/pages/Microbiologia_mutimedia/importanciavirus.htm#clasifvirus
(5) personal.telefonica.terra.es/web/elarcondemariajo/…/VIRUS.doc (Enlace al documento completo en la cita /3) de este apartado de fuentes webgaficas)
(6) http://es.wikipedia.org/wiki/Ciclo_reproductivo_de_los_virus
(7) http://www.profesorenlinea.cl/Ciencias/EnfermedadeVirales.htm
(8) http://www.ops.org.bo/its-vih-sida/?TE=20040628161659